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Normality

We now add a new assumption (in addition to the 5 we
studied before).

▶ Assumption 6. The error ϵi is independent of X (all the
set of covariates) and is normally distributed with zero
mean and variance σ2.

ϵi ∼i.i.d. N (0, σ2)

Notice that this assumption implies assumptions 4 and 5
(hence, they become redundant). This assumption (6) will
help us with the following theorem, but it is unnecessary if n is
large. We can also say ϵ ∼ N (0, σ2In).
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CLM

This set of 6 assumptions is called the classical linear model
(CLM) assumptions. A way to summarize the list of 6
assumptions is to say

yi |xi ∼i.i.d. N (β0 + β1xi1 + ...+ ϵi , σ
2)

where there is no multicollinearity among the X (the complete
matrix of independent variables).
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Normal sampling distribution

Theorem. Under the CLM assumptions (1 to 6) conditional
on X

β̂ ∼ N (β,Var(β̂))

Where Var(β̂) = (X ′X )−1σ2. Notice that this is the same as
saying,

β̂ − β√
Var(β̂)

∼ N (0, 1)

▶ Under the CLM assumptions, β̂ is the best linear unbiased
estimator (BLUE). It is the “best” in the sense that
minimizes the variance.
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T-test of the estimators
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t distribution

Theorem. For all βj in β (the complete vector), Under the
CLM assumptions (1 to 6),

β̂ − β

se(β̂)
∼ tn−k−1

where tn−k−1 is the t distribution with n − k − 1 degrees of
freedom. k + 1 is the number of parameters of the model.
That is why there are n − (k + 1) = n − k − 1 degrees of
freedom. Notice that this result is a little similar to the
previous theorem. Think of this one about the one more
applied for small samples.
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Testing

Usually, we are interested in testing a hypothesis of the form

H0 : βj = 0

This will imply β̂

se(β̂)
∼ tn−k−1.

We will now analyze how to conclude if we should reject or not
reject H0.
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One-sided alternatives

Consider a case in which it is only reasonable to have a
one-sided alternative hypothesis

H1 : βj > 0

Here, we could redefine H0 : βj ≤ 0, and analyze the
distribution only on the right side.

Notice that the rule we had before of Φ(c) = 1− α
2
does not

apply because we are analyzing only one tail. In this case, the
c for rejection should be found by Φ(c) = 1− α (Φ(c) = α if
the alternative hypothesis is left-sided).
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Two-sided alternatives

In the we have two-sided alternatives we go back to
H0 : βj = 0 and then

H1 : βj ̸= 0

In this case, we go back to the type of hypothesis tests we
studied in the first sessions where we worked with c = 1.96 to
reject the null hypothesis.
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Testing other hypothesis

In general, we are interested in studying if a coefficient is
different than zero, but sometimes we may want to analyze if
it’s different than aj (a real value). The analysis is the same, it
just will define

β̂j − aj

se(β̂j)
∼ tn−k−1

and then proceed with the same procedure for hypothesis
testing.
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P-Values

Remember that the P-value is the threshold of the t-statistic
to just reject the null hypothesis. In other words, it is that α
value where we both accept and reject.

Imagine that you get a t-statistic value of 1.85. Here, you can
not reject the null hypothesis for α = 0.05. Nonetheless, if we
define α = 0.1, we would reject the null hypothesis
(c = 1.645 < 1.85). In this case, the minimum α in which we
reject the null hypothesis is 0.072. This is its respective
P-Value.
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Interpretation

We prefer to say “we fail to reject H0 at the α level”, instead
of saying “we accept H0 at the α level”.

The reason for this is that there are many values that we may
not reject. If we just say “we accept...”, we would be accepting
a large amount of null hypothesis, which does not make sense.

An important consideration is that β is our parameter of
interest (not the significance level). If we find that the result is
statistically significant, but the β is too low, the result is
irrelevant. And vice versa.
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Confidence intervals

This part is the same as before. We define a confidence
interval for the parameter [Ân, B̂n] where

An = β̂j − c · se(β̂j)

Bn = β̂j + c · se(β̂j)

Where c depends on the α we define (1.96 for α = 0.05).
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Linear combination of parameters

What if we want to analyze a hypothesis of the form

H0 : β1 = β2

The procedure is much simpler than you may think. Just
define θ = β1 − β2 and the new hypothesis is H0 : θ = 0. As
long as we can find se(θ) we can apply what we did before.

Edicson Luna 16



F-test
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Motivation

Sometimes we are interested in testing a null hypothesis
including several variables. For instance, consider

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + ϵi (Model 1)

And we want to estimate the null hypothesis

H0 : β1 = 0 ∧ β2 = 0

H1 : β1 ̸= 0 ∨ β2 ̸= 0

How should we proceed?

Edicson Luna 18



SSR

Notice that we are tempted to consider two different t-tests
and reject if one is rejected.

There is a better way to carry out this test. But first,
remember our definition of the residual sum of squares

SSresidual =
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

e2

Remember that this sum of residuals is inversely related to the
number of variables. The more variables you add to the
model, the smaller the SSresidual.
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Intuition

Then, we are trying to study whether the inclusion of Xi1 and
Xi2 in the model are successfully explaining the data. That is,
if the SSresidual is being reduced sufficiently enough. To do
this, we need to analyze the model without those two variables

Yi = β0 + β3Xi3 + ϵi (Model 2)

And we compute the SSresidual to compare it with the initial
model.
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Formulation

Call the SSresidual from model 1 “SSR1” and the SSresidual from
model 2 “SSR2”. Then define the F statistic as

F :=
(SSR2 − SSR1)/2

SSR1/(n − k − 1)

The 2 comes from the number of parameters we restrict in the
model. This statistic under the null hypothesis is distributed
as F ∼ F2,n−k−1.
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Generalization

In general, call SSRur to the unrestricted model (the one with
all the variables) and SSRr to the restricted model. Also, say q
is the number of restrictions (the number of coefficients
equalized to 0 in our null hypothesis). Then,

F :=
(SSRr − SSRur)/2

SSRur/(n − k − 1)

Where
F ∼ Fq,n−k−1
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Rejection of the null hypothesis

With our F statistic, we may analyze if it is greater than a
critical value c for a given α. The critical value c depends on
q, n − k − 1 and α. Then, there are no general values such as
the 1.96 in the t-statistic for a large sample.
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Other expressions for F

F can also be defined using the R2 of the restricted and
unrestricted models.

F :=
(R2

ur − R2
r )/q

(1− R2
ur)/(n − k − 1)

Notice that an overall significance would give an R2 of zero.
Then, if we want to test all the variables at the same time, we
work with

F :=
R2/k

(1− R2)/(n − k − 1)
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