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The 3 steps of good work

1. Step 1: Define the effect of interest.
It implies asking “what if?”. It is contrary to just
describing (“what is”).

2. Step 2: Identification of the target parameter.
Identification links the thought experiment and data.

3. Step 3: Statistical inference.
In practice, we only see a finite sample of the observables.
Here, we want to use asymptotic theory to talk about the
real parameters.
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Essential concept

In general,

▶ We have a question (target parameter)

▶ We have a model (assumptions)

▶ We have some data (we are empiricists)

▶ We want to use the model and data to answer the
question

Identification is about making a logically coherent empirical
conclusion.
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Identification

In this class, our main objective will be identifying the
parameter β in the linear regression Y = Xβ (considering one
or more explanatory variables).

But what is identification? In simple words, it is to be able to
express the parameter in terms of the data after we assume a
model (in this case, a linear model). But let’s add a little
formality and much more intuition.
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Formal definition

Let P denote the true distribution of the observed data
(yi , xi)

n
i=1. Denote by P = {Pθ : θ ∈ Θ} a model for the

distribution of the observed data. We assume P ∈ P. In other
words, we assume ∃θ ∈ Θ such that Pθ = P . We are
interested in θ. (Θ is the set of all possible values of θ).

We define the set Θ0(P) := {θ ∈ Θ : Pθ = P} which is called
“the identified set”. We sat that θ is identified if Θo(P) is a
singleton ∀P ∈ P.
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More on identification

Notice that identification has nothing to do with statistical
inference.

sample → population → unobserved parameters

Identification is about the second arrow. Statistical inference
is about using the sample to learn about the population (we
will be back to this soon).

The second arrow is logically the first thing to consider: can
we recover the population parameter when we know the
population distribution?
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Why asymptotics?

Notice that when we analyzed the expectation of our
estimators, we used finite sample properties. Now we will work
with large sample properties.

But, why are we working with asymptotic properties if we
(almost) always have finite data? The reason is that obtaining
unbiased estimators is usually not possible. That is why
economists typically focus on what would happen if n → ∞.

Economists agree that consistency (I will define it soon) is the
minimal requirement for an estimator.
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Consistency
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Consistency: formal definition

Let θ̂ be an estimator of θ based on some data (Xi)
n
i=1. Then,

θ̂ is a consistent estimator of θ if ∀ϵ > 0,

P(|θ̂ − θ| > ϵ) → 0 as n → ∞

We also say that θ̂ converges in probability to θ. If θ̂ is not
consistent, we say that the estimator is inconsistent.

Notice that if we have a consistent estimator, θ̂
p−→ θ. This

means that having consistency implies that we can
identify the parameter (which is our final goal). That is
why we want to talk about consistency.
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Theorems

Remember that previously we derived
β = [Var(X )]−1Cov(X ,Y ). The LLN and CLT we studied
before are not completely useful for what comes now. The
reason is the following.

▶ Consider a sequence X1,X2, ...,Xn of RVs that are i.i.d.
Now, fix n and define a sequence of RVs defined as
W2, ...,Wn such that Wi = (Xi − X̄n)

2 where X̄n is the
average of the first n X ’s.
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Theorems

▶ For simplicity compare W2 and W3. Notice that in both
cases you have the term X̄n.

▶ Therefore, there is not complete independence between
W2 and W3.

▶ And so, since there is a degree of dependence in the
sequence W1,W2, ... (they are not i.i.d.), we can not use
our theorems. The good news is that there are some
relaxed versions of the LLN and the CLT.
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Relaxed theorems

Assume there is weak dependence in a sequence of RVs
W1,W2, ...

▶ LLN (V2): As long as E [W 2
i ] < ∞, it is true that

W̄n
p−→ E [Wi ] as n → ∞.

▶ CLT (V2): As long as E [W 2+δ
i ] < ∞ for δ > 0, it is true

that W̄n−E [Wi ]

se(W̄n)

d−→ Z as n → ∞. (Z is the standard normal

distribution). This is the same as saying
√
n(W̄n − E [Wi ])

d−→ N (0,V ).
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CLM Assumptions

Let’s quickly remember our CLM assumptions (in the model
with more than one regressor)

1. Linearity in parameters. That is, the true relationship
between yi and xi is

yi = β0 + β1xi1 + β2xi2 + ...+ βk−1xik−1 + ϵi

2. There is random sampling. That is, the observations are
i.i.d.

3. The matrix E [X ′X ] has complete rank. (i.e. it’s
invertible).

4. Zero conditional mean, E[ϵ|X ] = 0. This also may be said
as E[ϵi |xi ] = 0
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Consistency of the estimator

Theorem. Under assumptions 1 to 4, the OLS estimator is
consistent.

Proof. Remember

β̂ = (X ′X )−1X ′Y = β + (X ′X )−1X ′ϵ

= β +

(
n∑

i=1

xix
′
i

)−1 n∑
i=1

xiϵi

= β +

(
1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

xiϵi
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Consistency of the estimator

By the LLN, assuming weak dependence

1

n

n∑
i=1

xix
′
i

p−→ E[xix ′i ]

1

n

n∑
i=1

xiei
p−→ E[xiϵi ]

Notice that E[xiei ] = 0 by the LIE. Then (by Slutsky’s
theorem)(

1

n

n∑
i=1

xix
′
i

)−1
1

n

n∑
i=1

xiϵi
p−→ E[xix ′i ]−1 × 0 = 0
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Relaxation of the assumption

Notice that E[ϵi |xi ] = 0 implies E[xiϵi ] = 0, but not the
contrary. That is, we could perfectly relax E[ϵi |xi ] = 0 and
assume that E[xiϵi ] = 0 (which is a weaker assumption since it
is implied by the former).

Slutsky is about being able to multiply the expectations in the
limit. We will use this concept again when we work with the
asymptotic distribution.
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Slutsky for consistency (V1)

There are two versions of Slutsky. So far, let’s state the one
we just used.

Slutsky’s theorem. Let (Xn)
N
n=1 and (Yn)

N
n=1 two sequences

of RVs. Take c as a constant. If Xn
p−→ X and Yn

p−→ c , it is
true that

▶ Xn + Yn
p−→ X + c

▶ XnYn
p−→ Xc

▶ If c ̸= 0, Xn

Yn

p−→ X
c

Notice that we used the one in the middle.
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Asymptotic distribution
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Motivation

Notice that consistency is important since it tells us that our
estimator goes in the right direction. We at least know that as
we add observations (which should be i.i.d.) we are getting
closer and closer to the real parameter (i.e. β̂ is converging
into β as n increases). As mentioned before, consistency is the
minimum requirement for any estimator.

Nonetheless, notice that consistency does not allow us to
perform statistical inference. That is why, now we focus on
the sampling distribution of the OLS estimators.
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Assumptions

We need to bring back assumption 5.

5. The error is constant given any value of X .

Var(ϵ|X ) = σ2In

Notice that previously we stated a 6th assumption about ϵi
being normally distributed (and therefore yi). Now, we will not
need it. The reason as you may expect is that even if ϵi is not
normally distributed, we will have normality by the CLT.
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Assymptotic normality of OLS

Theorem. Under assumptions 1 to 5,

√
n(β̂ − β)

d−→ N (0,V )

where V := Σ−1ΩΣ−1 with Σ = E[xix ′i ] and Ω = E[X ′ϵϵ′X ]
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Assymptotic normality of OLS

Proof. Remember β̂ = (
∑n

i=1 xix
′
i )

−1∑n
i=1 xiyi which is the

same as
(
1
n

∑n
i=1 xix

′
i

)−1 1
n

∑n
i=1 xiyi . Replacing yi is not

difficult to see

√
n(β̂ − β) =

(
1

n

n∑
i=1

xix
′
i

)−1
1√
n

n∑
i=1

xiϵi

By the CLT

1√
n

n∑
i=1

xiϵi
d−→ N (0,Var(Xiei) = E[X ′ϵϵ′X ] = Ω)
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Assymptotic normality of OLS

Finally, by Slutsky (V2)(
1
n

∑n
i=1 xix

′
i

)−1 1√
n

∑n
i=1 xiϵi

d−→ N (0,Σ−1ΩΣ−1).

In conclusion, √
n(β̂ − β)

d−→ N (0,V )

Notice that in this case, we did not require the errors to have
a normal distribution (as we did in hypothesis testing). The
reason, as you already know, is the CLT which gives us the
normality if n → ∞. The Slutsky used here is another one
which I will define in the next slide.
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Convergence in distribution

▶ Convergence in distribution: A sequence (Xn)
∞
n=1 or

RVs, with CDFs (Fn)
∞
n=1. We say Xn

d−→ X if

lim
n→∞

Fn(x) = F (x)
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Slutsky for asymptotic distribution (V2)

Slutsky’s theorem. Let (Xn)
N
n=1 and (Yn)

N
n=1 two sequences

of RVs. Take c as a constant. If Xn
d−→ X and Yn

p−→ c , it is
true that

▶ Xn + Yn
d−→ X + c

▶ XnYn
d−→ Xc

▶ If c ̸= 0, Xn

Yn

d−→ X
c

Again, in the proof we followed the one in the middle.
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Natural estimator for variance

To carry out inference, the proposed consistent estimator for
the asymptotic variance is of the form

V̂ := Σ̂−1Ω̂Σ̂−1

where

Ω̂ := X ′ϵϵ′X =
1

n

n∑
i=1

e2i xix
′
i

Σ̂ :=
1

n

n∑
i=1

xix
′
i

where ei is the residual of the regression.
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Natural estimator for variance

It is evidently that Σ̂
p−→ Σ by the LLN. Then, as long as

Ω̂
p−→ Ω, we use Slutsky (V1) and conclude that V̂

p−→ V .

Ω̂ =
1

n

n∑
i=1

e2i xix
′
i =

1

n

n∑
i=1

(
yi − x ′i β̂

)2
xix

′
i

=
1

n

n∑
i=1

(
ϵi − x ′i (β̂ − β)

)2
xix

′
i

=
1

n

n∑
i=1

ϵ2i xix
′
i − 2

1

n

n∑
i=1

(β̂ − β)′xi ϵixix
′
i +

1

n

n∑
i=1

[
(β̂ − β)′xi

]2
xix

′
i

p−→ Ω

Given that the second and third terms converge to zero
(remember that β̂ is a consistent estimator for β) and the first
term converges to Ω by the LLN.
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