Repeated Games

Edicson Luna

August 15, 2025

Motivation

- One-shot dilemmas often end badly:
 In the classic Prisoners' Dilemma, both players defect—even though mutual cooperation would be better.
- But what if the game is played more than once? Real-life interactions (e.g., between businesses, co-workers, or neighbors) are rarely one-time events.
- Repetition opens the door to cooperation:
 - Players can build trust over time.
 - They can *punish defection* in future rounds.
 - They can use *promises or threats* to influence behavior.
- Key idea: The future matters.
 Cooperation today may be rewarded tomorrow—or betrayal punished.

The Standard Prisoners' Dilemma

	vvire		
Husband	Confess (Defect)	Deny (Cooperate)	
Confess (Defect)	(-10, -10)	(-1, -25)	
Deny (Cooperate)	(-25, -1)	(-3, -3)	

/V/:£~

- ✓ **Dominant strategy:** Confess (Defect), for both players.
- \checkmark **Equilibrium:** (Confess, Confess) → each gets 10 years.
- ✓ **Mutual cooperation (Deny, Deny)** is better (3 years each), but unstable.

Why Repetition Matters

- One-shot Prisoners' Dilemma leads to defection and a worse outcome for both players.
- But in many real-world settings, interactions are repeated over time.
- Key idea: Fear of losing future cooperation can sustain cooperation today.
- If the value of long-term cooperation is high enough, players will avoid short-term gains from defection.
- No need for external enforcement—cooperation can be self-sustaining.

Repetition transforms the logic of the game.

Example: Restaurant Pricing Game

Yvonne's Bistro

Xavier's Tapas	\$20 (Defect)	\$26 (Cooperate)	
\$20 (Defect)	(288, 288)	(360, 216)	
\$26 (Cooperate)	(216, 360)	(324, 324)	

- √ Collusive outcome (Cooperate, Cooperate): profits of 324 each.
- ✓ But (Defect, Defect) is the Nash equilibrium: both earn only **288**.
- \checkmark If one defects (e.g. Xavier chooses \$20), he earns **360** in that round.

Incentives in Repeated Play

Scenario: Xavier considers defecting once (price \$20) while Yvonne cooperates.

- \rightarrow **One-time gain:** 360 324 = +36 (i.e., \$3,600).
- → **Future loss:** If cooperation breaks down:
 - Xavier now earns 288 instead of 324.
 - Loss = -36 per future month.

Total future loss > Short-term gain $\Rightarrow 36 \times t > 36 \Rightarrow h > 1$

Which means tomorrow having at least 2 periods (given > 1). Hence, if the relationship lasts at least 3 months (today and 2 periods of the future), it's better to stay cooperative.

The shadow of the future can discipline short-term temptation. Nonetheless, things are not that simple.

Finite Repetition and the End-Game Effect

What if the game lasts exactly 3 months? We apply backward induction

- \rightarrow Month 3: No future punishment possible \rightarrow best to defect.
- \rightarrow Month 2: Knowing both will defect in Month 3 \rightarrow defect now.
- \rightarrow Month 1: Anticipating defection in Months 2 and 3 \rightarrow defect from the start.
 - Cooperation unravels backward: defection in every round.
 - Even if repeated, a known end makes cooperation unsustainable.
 - This is called the end-game effect.

In theory, finite games leads to defection. In practice, people tend to cooperate.

Why Do We Discount the Future?

- * In repeated games, we compare future gains and losses to present ones.
- ★ But future payoffs are often worth less than present payoffs. Why?
- Impatience: People tend to prefer benefits now rather than later.
- Opportunity cost of savings: Money today can be invested to earn returns.

Notation:

- \circ r = **discount rate** (e.g., interest rate, rate of return)
- o $\delta = \frac{1}{1+r} =$ discount factor. We will use δ to convert future payoffs into present utility.

Infinite Repetition and Cooperation

- When the game has no known end, future consequences matter.
- Players can now use contingent strategies, where their choice depends on past behavior.
- A key class: trigger strategies, which punish defection to sustain cooperation.
- Two well-known trigger strategies:
 - Grim strategy: Cooperate until opponent defects, then defect forever.
 - Tit-for-tat (TFT): Mirror your opponent's previous move.

With enough future at stake, cooperation becomes rational.

Is It Worth Defecting Once Against Tit-for-Tat?

- Defecting once gives Xavier a one-time gain of 36.
- O But Yvonne (playing TFT) punishes by defecting next month
 → Xavier loses 108.
- Xavier compares:

Gain: 36 vs. Loss:
$$108\delta$$

Defection is profitable only if:

$$36 > 108\delta \Rightarrow \delta < \frac{1}{3}$$

 So, Xavier needs to be extremely impatient to have incentives to deviate.

Defecting Forever: Worth It?

o Xavier defects and continues to do so, getting:

Gain in Month 1: 36

- He loses 36 every month after that due to Yvonne's grim retaliation.
- o Present value of losses (infinite sum):

$$\sum_{n=1}^{\infty} 36\delta^n = \frac{36\delta}{1-\delta}$$

Compare:

Defecting is worth it if
$$36 > \frac{36\delta}{1-\delta} \Rightarrow \delta < \frac{1}{2}$$

Games of Unknown Length

- In many real-world repeated games, players don't know how long the interaction will last.
- Suppose the game continues to the next round with probability p.
- Future payoffs are now discounted by both:
 - the time discount factor $\delta = \frac{1}{1+r}$
 - and the probability of continuation p

Effective discount factor: $p\delta$

We just multiply the probability of continuation. The lower p, the less players care about the future \rightarrow cooperation becomes harder to sustain.

Evaluating Infinite Discounted Payoffs

A player who receives a constant payoff every period values the future less than the present.

For instance, suppose a player gets 6 every period forever. With discount factor δ , the total value is:

$$6+6\delta+6\delta^2+6\delta^3+\cdots$$

This is a geometric series:

Total payoff
$$= \frac{6}{1-\delta}$$

More generally: If the per-period payoff is x, then the value of receiving x forever is:

$$\frac{x}{1-\delta}$$

Exercise: Infinitely Repeated Prisoner's Dilemma

Player 2

Player 1
Cooperate (C)
Defect (D)

· , ·			
Cooperate (C)	Defect (D)		
(3, 3)	(0, 5)		
(5, 0)	(1, 1)		

- √ Grim Trigger Strategy:
 - Play (C,C) in period 1
 - Continue playing (C,C) if no defection has occurred
 - If any deviation occurs → play (D,D) forever
- ✓ Is this a subgame perfect equilibrium (SPE)?
- \checkmark Depends on δ .

Incentive to Cooperate in the Infinitely Repeated PD

Player 2

Player 1	Coop
Cooperate (C)	
Defect (D)	

Cooperate (C)	Defect (D)	
(3, 3)	(0, 5)	
(5, 0)	(1, 1)	

If both follow grim trigger:

Payoff from cooperating =
$$\frac{3}{1-\delta}$$

If player 1 deviates once:

Payoff from defecting
$$=$$
 5 $+$ $\frac{1 \cdot \delta}{1 - \delta}$

continuation

No incentive to deviate if:

$$\frac{3}{1-\delta} \ge 5 + \frac{\delta}{1-\delta} \Rightarrow 3 \ge 5(1-\delta) + \delta \Rightarrow \delta \ge \frac{2}{5}$$

Conclusion: Grim trigger is an SPE if and only if $\delta \geq \frac{2}{5}$.

Example: Alternating NE Strategy (from Full Matrix)

	a	b	С	d
a	9, 9	2, 4	1, 11	3, 0
b	4, 2	4, 4	2, 2	1, 1
c	11, 1	2, 2	-1, -1	5, 3
d	0, 3	1, 1	3, 5	0, 0

Grim Trigger to (b,b)

Strategy:

- Play (a, a) in period 1.
- In any future period:
 - If (a, a) was always played in the past, continue playing (a, a).
 - Otherwise, switch permanently to (b, b).

SPE condition: This is an SPE if $\delta \geq \frac{2}{7}$.

Trying a Harsher Punishment

New idea: What if we punish more harshly?

- In period 1, play (a, a).
- In any later period:
 - If (a, a) was always played, continue with (a, a).
 - If any deviation is observed, switch forever to (d, d) or (c, c).

Student prompt: "Can this help support (a, a) even when $\delta < 2/7$?"

What's the Problem with (d,d)?

Suppose: A deviation happens in period 1.

- Then punishment (d, d) starts in period 2.
- o But... is that punishment credible?

Payoffs:

- Follow: $0 + 0 + 0 + \cdots = 0$
- o Deviation: $5+0+0+\cdots=5$

Conclusion: Player prefers to deviate!

Why Isn't (d,d) a Valid Punishment?

Key point: (d,d) is **not** a Nash Equilibrium of the stage game.

- Grim-trigger to a non-NE doesn't work players won't stick to it.
- The punishment itself must be an equilibrium path in the subgame.

Lesson: You can't enforce (a,a) forever by threatening something players won't actually follow through on!

Tailoring the Punishment to the Deviator

Smarter strategy:

- \checkmark In period 1: play (a, a).
- ✓ In later periods:
 - Play (a, a) if always played in the past.
 - If first deviation was (a, c), punish with (c, d).
 - Otherwise, punish with (d, c).

Result: This is an SPE if $\delta \geq \frac{1}{4}$

We have improved the bound!

Edicson Luna 2:

An SPE with No Discounting Requirement

Strategy:

- o In every odd period: play (c, d)
- \circ In every even period: play (d, c)

Why does this work?

- -(c,d) and (d,c) are both NE of the stage game.
- No incentive to deviate players best respond in each round.
- Future behavior doesn't depend on history no punishment required.

Conclusion: This is an SPE for any δ !